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Applications of polydisperse sedimentation models
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Abstract

This paper reviews some recent advances in mathematical models for the sedimentation of polydisperse suspensions. Several early models
relate the settling velocity to the solids concentration for a monodisperse suspension. Batchelor’s theory for dilute suspensions predicts the
settling velocity in the presence of other spheres that differ in size or density. However, this theory is based on the questionable assumption
that identical spheres have identical velocities, and leads to significantly differing results for spheres that differ only slightly in size or density.
Since Batchelor’s analysis cannot be extended to concentrated suspensions, one needs to revert to semi-empirical equations and computational
results. A rational model developed from the basic balance equations of continuum mechanics is the Masliyah–Lockett–Bassoon (MLB)
model. A useful tool for evaluating polydisperse hindered settling models in general is a stability analysis. Basically, a model should reflect
that, for polydisperse suspensions of equal-density spheres, instabilities such as blobs or fingers during separation are never observed. These
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tructures do not form if the model equations are hyperbolic. The MLB model provably has this property, in contrast to certain extrap
he Batchelor model. The sedimentation process of a suspension can be simulated by either solving the conservation equations nu
sing a sophisticated scheme for conservation laws, or by using a particle-based method. Numerical examples illustrating both me
re presented, with an emphasis on fluidization problems.
2005 Elsevier B.V. All rights reserved.
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. Introduction

Despite the attention paid to sedimentation of monodis-
erse suspensions, polydisperse suspensions are far more
ommon. Some spheres are so nearly uniform that they
re essentially identical[1–3]. However, many experiments
ith “monodisperse suspensions” involve spheres that have
n approximately normal distribution with a considerable
pread in diameters[4,5]. Similarly, each species in a “bidis-
erse” or “tridisperse” suspension often has a distribution of
iameters[6].

The relationship between settling velocity and solids con-
entration in monodisperse suspensions has been the subject
f many theoretical and empirical studies. Noting that the
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presence of particles affects both the density and visc
of the suspension (see, for example,[7]), Robinson[8] sug-
gested, as early as 1926, a modification of Stokes’ la
which the density and viscosity of the suspension rep
those of the fluid. For very dilute suspensions, Kermack
[9] and Batchelor[10] derived equations of the form

v(φ) = u∞(1 − nφ), (1)

wherev is the velocity of a sedimenting sphere,

u∞ = −�ρgd
2

18µf
(2)

is the Stokes velocity (where�ρ is the solid–fluid densit
difference,g the acceleration of gravity,d the diameter of th
sphere andµf is the dynamic viscosity of the fluid), andφ is
the volumetric solids concentration. There are many em
ical or semi-empirical equations such as those of Stei
[11], Richardson and Zaki[12], and Barnea and Mizra
[13]. Of these, the best known and most widely used is
385-8947/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
oi:10.1016/j.cej.2005.02.006
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Richardson–Zaki equation

u(φ) = u∞(1 − φ)n. (3)

Eq. (3) is often used for slightly polydisperse suspensions.
Then, the value ofu∞ is determined by extrapolation and
compared to the value calculated for some representative di-
ameter[4,14]. The value ofndepends on the Reynolds num-
ber and, to a lesser extent, on the sphere–cylinder diameter
ratio. Most experimental values range from 4.6 to 5.5 for
creeping flow. Scott[15] suggests 4.7 as the most appropri-
ate value. The reasons for the considerable variation are not
entirely understood, son is appropriately chosen as the value
that gives the best fit.

2. Sedimention of dilute suspensions

Kermack et al.[9] in 1929 appear to have been the first to
use the condition that the net flux in batch sedimentation is
zero. In modern terminology:

q = (1 − φ)vf + φ1v1 + · · · + φKvK = 0, (4)

whereq is the volume–average velocity of the suspension,
vf the velocity of the fluid,φk and vk the volume frac-
tion and the velocity of solids speciesk, k= 1, . . ., K, and
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whereu∞i is the Stokes velocity of theith species,φj the
concentration of thejth species, and the coefficientsSij are
the so-called “Batchelor coefficients”. While Batchelor and
Wen [20] calculated results for many different combina-
tions of size and density, the values for identical and nearly
identical spheres are of special interest because they high-
light the importance of their assumptions. They obtained
the valuesSii =−6.55 for λ= 1 and γ = 1, Sii =−5.6 for
λ≈ 1 andγ = 1 andSii =−2.6 for λ= 1 andγ ≈ 1, where
λ: =dj/di , γ: = (ρj − ρf )/(ρi − ρf ), di andρi are the size and
the density of speciesi, respectively, andρf is the density
of the fluid. These strange results arise from their assump-
tion that identical spheres have identical velocities while
spheres that differ slightly in either size or density have
slightly different velocities. Tory and Kamel[3] pointed
out that identical spheres do not have identical velocities
[17]. Indeed, the effects of very small differences in size
and/or density are completely dwarfed by the huge influ-
ence of local configuration[1,16,18,21]. This throws into
question Batchelor’s markedly different results for almost
identical situations. Indeed, Tory and Kamel[3] maintain
that hydrodynamic diffusion makes the cases (λ= 1, γ = 1),
(λ≈ 1, γ = 1), (λ= 1, γ ≈ 1), and (λ≈ 1, γ ≈ 1) essentially
the same.

In fact, all of these cases at large Peclet numbers must
be compared with the Richardson–Zaki equation for small
v
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= φ1 + · · · + φK is the total solids volume fraction. Co
ition (4) is obvious for a contained suspension and se
s the definition of batch sedimentation. Since increasin
ize of a cluster increases its velocity, Eq.(4) must be im
osed on an unbounded suspension to obtain a finite vel
atchelor[10] also usedq= 0 in his derivation of the mea
article velocity in a monodisperse suspension. Unlike m
thers, who assumed a lattice or some other ordered co
ation, he assumed that the suspension was disordered
ssumption has been confirmed by many direct observa

16–18]. Batchelor’s major contribution was his recognit
f the importance of the deviatoric stress tensor:

ij = σij − 1
3δijσkk, (5)

hich is defined in both the fluid and solid parts of the
ersion and has the Newtonian form 2µfeij in the fluid, where
ij is the rate of strain tensor. In Eq.(5), δij is the Kronecke
elta. Batchelor noted thatdij (x) is a stationary random fun

ion of position in a statistically homogeneous suspen
nd so has constant mean. After an extensive analysis

hese assumptions and the probability distribution of the
ration of two spheres, he obtained Eq.(1). He noted tha
ssuming an ordered structure led to a completely diffe
ependence onφ, namelyφ1/3. He also recognized that t
alue of n depends on the assumed distribution of sp
enters.

A similar analysis of polydisperse suspensions[19,20]led
o

i = u∞i(1 + Si1φ1 + · · · + SiKφK), i = 1, . . . , K, (6)
alues ofφ. Batchelor’s equation (withSii =−6.5 forλ≈ 1,
≈ 1) appears to work well at small Peclet numbers in
bsence of interparticle forces[2]. In this case, Brownia
otion ensures that the random distribution of sphere ce

emains uniform. Hydrodynamic diffusion is very import
t large Peclet numbers, but is not taken into account i
atchelor–Wen analysis. Since this diffusion depend
ome regions of the suspension being denser than other[21],
he steady-state distribution is not obvious. A further d
ulty is that Eq.(6)applies only to very dilute suspensions,
his is the range in which “cluster settling” occurs[1,22–24].
ence, calculated and measured velocities may not agre[3],
specially when the diameter of the container is large c
ared to the particle diameter[23,25]. Typically, the interfac
elocity is less than the mean velocity of the spheres in
nterior[1,26], which may be greater than the Stokes velo
24,26].

. Sedimentation at higher concentrations

Eq.(4) and the condition ondij (x) apply at all concentra
ions, but the type of analysis used by Batchelor applies
o dilute suspensions. Geigenmüller and Mazur[27] studied
he sedimentation of spherical particles of common dia
er d in an incompressible fluid of viscosityµf in a closed
ontainer. Starting from the pressure tensor in the fluid
howed that the friction force that the fluid exerts on a sp
n a suspensionequals the buoyancy-corrected gravitatio
orce on it. For a polydisperse suspension, this is
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∫
Fk(r ) dr = π

6
d3
k (ρk − ρf )g. (7)

Note that they use the density of the fluid, not the suspension.
This distinction is important in view of the controversy sur-
rounding the use of the suspension density in sedimentation
and fluidization[28]. Of course,Fk(r ) depends onΦ= (φ1,
φ2, . . ., φK)T, the vector of solids concentrations of theK
species. In principle, the derivation by Geigenmüller and
Mazur yields velocities for concentrated suspensions, but the
solution rapidly becomes intractable for non-dilute suspen-
sions. Thus, empirical equations or computational results are
required at higher concentrations.

Davis and Gecol[29] postulated that Batchelor’s results
could be extended to higher concentrations. They introduced
the equation

vi = u∞i(1 − φ)−Sii


1 +

K∑
j=1

(Sij − Sii)φj

 ,

i = 1, . . . , K. (8)

This simplifies to Eq.(3) for monodisperse suspensions (with
n=−Sii ). For very small values ofφ, terms of second order
can be neglected, and Eq.(8) reduces to Eq.(6). Richardson
and Shabi[30] stated that the settling velocities in a polydis-
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kth species will indeed move upwards. However, this result
is not an assumption, but a consequence.

The fundamental assumption for the rigorous derivation
[33,36]of the MLB[31,32]and the related Patwardhan–Tien
model[37] is that the solid–fluid interaction force between the
ith species and the fluid is given by a concentration-dependent
factor multiplying the slip velocity, or solid–fluid relative ve-
locity vi − vf . (This approach is in agreement with the prin-
ciple of objectivity, which states that constitutive equations
should be stated in terms of objective quantities, and it is well
known that the difference between two velocities is objective,
while a single velocity is not[38].) Inserting these assump-
tions into the reduced momentum balances for each solids
species and the fluid and choosing a Richardson–Zaki[12]
dependence, viz.

V (Φ) =
{

(1 − φ)n−2 if 0 ≤ φ ≤ φmax,

0 otherwise,
(13)

we unequivocally obtain Eq.(10). Nevertheless, Ha and Liu
[39] state that the main assumption of models based on slip
velocities is that “the particle volume fractions are uniform
in any given region”. This is incorrect, of course. Moreover,
it betrays a fundamental misunderstanding of the nature of
models. A model is simply a means of predicting settling
velocities from solids concentrations, i.e.,v(Φ). It is beyond
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d s in
erse suspension could be represented as

k = u∞k(1 − φ)n, k = 1, . . . , K. (9)

owever, this equation does not adequately accoun
ifferences in the return flow of fluid caused by
ownward movement of different species. The appro
te generalization of the Richardson–Zaki equation is
asliyah–Lockett–Bassoon (MLB) equation[31–33]:

k = µ(1 − φ)n−2

×

δk(ρk − ρ(Φ)) −

K∑
j=1

δjφj(ρj − ρ(Φ))


 ,

k = 1, . . . , K, (10)

here

(Φ):=ρf (1 − φ) + ρ1φ1,+ · · · + ρKφK, (11)

k:=d
2
k

d2
1

, µ:= − gd2
1

18µf
= u∞1

ρ1 − ρf
. (12)

ere,u∞1 is the Stokes velocity of the largest species. N
hat u∞1 < 0 whenρ1 − ρf > 0. As in the Richardson–Za
quation, the value ofn can be chosen to fit the experimen
ata[34].

Contrary to the statement in a recent review[35], Masliyah
id not assume that “the slip velocity (velocity of parti
elative to the liquid) is governed by the. . . and the differenc
etween the particle and suspension densities”. Of cours
10)shows thatρk<ρ(Φ) andρj >ρ(Φ), j 	= k, imply that the
he scope of modeling to assume that the concentration
niform in any given region; the concentrations are de
ined by the evolution of the suspension. In some case

oncentrations remain constant in a certain region; in o
ases, they do not.

Finally, we mention that it is necessary to explicitly “bu
n” to the mathematical model that the solution should ass
hysically relevant values only. This is most convenie
one by setting the hindered settling factor to zero wher
ecessary, as is done in Eq.(13).

Whenρ1 = ρ2 = · · · = ρK, Eq.(10) reduces to

k = vk(Φ) = u∞1(1 − φ)n−1(δk − (δ1φ1 + · · · + δKφK)),

k = 1, . . . , K (14)

s the velocity of thekth species[40]. Eq.(14)clearly reduce
o Eq.(3) when only a single species is present. Thus,
3), (14) and (10)represent a consistent, unified approac
edimentation.

Patwardhan and Tien[37] proposed a model in which th
ffective solids concentration is different for each spe
his could be more accurate if steric hindrance causes
mall particles to be carried downward with the larger o
ather than moving freely in the liquid. However, as no
elow, it makes the analysis of stability more difficult.

. Stability of suspensions

Analyses of settling suspensions are usually
imensional, so it is important to identify suspension
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which a three-dimensional analysis is required. Thanks
largely to the work of Weiland and his collaborators[41–43],
it became apparent that suspensions of particles of greatly
differing densities settle in an anomalous manner. In partic-
ular, instability phenomena such as blobs and fingering are
evident. In the most extreme cases, bidisperse suspensions of
heavy and buoyant particles segregate into upward and down-
ward streams, resulting in a much faster separation than that
predicted from a one-dimensional analysis.

Batchelor et al.[44] formulated a stability criterion for
bidisperse suspensions. Biesheuvel et al.[45] used this crite-
rion to test the predictions of the MLB and Patwardhan–Tien
models. Using the MLB and Davis–Gecol models, Bürger et
al. [33] showed that some flux-density vectors

f(Φ) = (f1(Φ), f2(Φ), . . . , fK(Φ))T

cause the first-order system of conservation laws

∂φi

∂t
+ ∂fi(Φ)

∂x
= 0, i = 1, . . . , K (15)

to be non-hyperbolic, or to be of mixed hyperbolic–elliptic
type in the bidisperse case. The criterion for ellipticity is
equivalent to the stability criterion. They showed that loss of
hyberbolicity, indicated by the occurrence of complex eigen-
values of the Jacobian of Eq.(15)
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As there is no creditable experimental evidence for such
instability, the Davis–Gecol equation is inferior to the MLB
equation in this respect. It seems to us that these qualitative
predictions are extremely important. For example, if some
degree of instability is present in a bidisperse system in
whichρ1 >ρ2 >ρ(Φ), species 1 may stream through species
2 as both move downward. Then, we should not expect
agreement with results from a one-dimensional analysis.
Thus, simple comparisons of calculated and experimental
results are an inadequate criterion for evaluating models
when particle densities differ substantially. Comparisons of
experimental and theoretical results for an equal-density case
are always appropriate. However, such comparisons should
be based on the entire settling curves and, if possible, the rise
of the packed bed. In this regard, we note that recent work by
Bargieł et al.[34] shows close agreement between Eq.(14)
and the experimental results of Shannon et al.[4,46]. See
Section8 for the risks involved in using a cited concentration
dependence as the only basis for evaluation of models[35].

5. The sedimentation process

Sedimentation is the evolution ofΦ(z,t), 0 <z≤H, t≥0,
from Φ0 to Φmax(z), whereΦmax is the value ofΦ when
φ tor
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∂fi(Φ)

∂φk

)
i,k=1,...,K

, (16)

an be viewed as an instability criterion for arbitrary po
isperse systems. For tridisperse suspensions, this cri
an be evaluated by a convenient calculation of a disc
ant. B̈urger et al.[33] proved that the MLB equation predic
tability for all bidisperse suspensions in which the sph
ave the same density, and conjectured that all polydis
uspensions of this kind would be stable. This conjecture
roved by Berres et al.[36]. The generic assumption to ens
yperbolicity and hence stability is

(φ) > 0, V ′(φ) < 0 for 0< φ < φmax, (17)

hereφmax is the maximum total solids concentration f
ible in the polydisperse system. Thus, the form show
q. (14) is not the only one that ensures stability. Howe
q.(17)is satisfied byV(φ) = (1−φ)n−2, n> 2, and, as note
bove, this form is consistent with the Richardson–Zaki e

ion. The important point is that the proof at present is lim
o functions of the formV(φ) only. Specifically, it is not clea
o us at the moment whether it may be extended to the
ered settling factors of the Patwardhan–Tien model[37],
hich depend onΦ rather thanφ, and differ for each partic
pecies. At present, this model appears to be too compli
or generalizations of the stability analysis in[33,36], so only
umerical calculations are possible.

In contrast to the MLB equation, the Davis–Ge
quation predicts regions of instability for some bidisp
ystems in which both species have the same density[33].
=φmax. This evolution is governed by the solids flux vec
= (f1, f1, . . ., fK)T, wherefk=φkvk. The two essentials fo
redicting this evolution are the model equation and a me
f implementing the changes produced by the flux. The g
ehavior of sedimenting monodisperse suspensions c
educed from the flux plot[46–49], but this approach is n
vailable for polydisperse suspensions. The settling pro

s still governed by the solids flux, but the process is m
omplicated. In particular, the evolution depends not onl
he total fluxf= f1 + f2 + · · · + fK, but also on the componen
k.

In one of the earliest treatments of a polydisperse sus
ion, Smith[50] derived the increases in the concentrat
f slower-settling species in the upper regions. For simpl
onsider the sedimentation of a bidisperse suspension
ppermost region contains only the slower settling spe
esignated as species 2. Suppose that the solids conc

ions of both species remain constant in the region abov
acked bed. The faster settling species (designated by
bsent from the top level (designated by +). Thus, the

ocity of species 2 there isv2(φ+
2 ). Below the mixed-sma

nterface, the velocities arev2(Φ0) andv1(Φ0). A materia
alance[50] yields

+
2 [v2(φ+

2 ) − v1(Φ0)] = φ0
2[v2(Φ0) − v1(Φ0)]. (18)

pecies 2 settles more rapidly in the upper region than i
riginal suspension. Since downward velocities are nega
2(φ+

2 ) < v2(Φ0). From Eq.(18), φ+
2 > φ

0
2. This “Smith ef-

ect” can be seen in many simulations[34,36,40,51,52]. A
imilar derivation can be applied to any discrete polydisp
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suspension. Bargieł et al.[34] derived the same result from
an analysis of particle paths.

Successful prediction of suspension evolution requires
that the scheme proceed automatically fromΦ0 to Φmax.
There are two main methods of implementing the theoretical
evolution of the suspension. One is to use a sophisticated
numerical scheme that tracks discontinuities automatically
[36,53–55]. We briefly discuss these schemes, following
the introduction of[52]. These schemes, which will pro-
duce accurate approximations of discontinuous solutions
to Eq. (15) without explicitly using jump conditions or
shock-tracking techniques, are calledshock-capturing.
The last three decades have seen tremendous progress in
the development of shock-capturing schemes for systems
of conservation laws; see for example[56,57]. Roughly
speaking, shock-capturing schemes may be classified into
two categories: central and upwind. The main disadvantage
of upwind schemes is the difficulty of solving the Riemann
problem exactly or approximately, especially for compli-
cated systems of conservation laws. In fact, the (exact or
approximate) solution of the Riemann problem for(15)
combined with the flux vector defined by(10) has not yet
been determined. For this reason, central schemes have
so far been preferred. In the 1990s, this class of schemes
received (in part renewed) interest following Nessyahu and
Tadmor’s [54] second-order sequel of the Lax–Friedrichs
s iven
i
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because they are affected by particles in the artifical sub-
layer. The lowest particle is in the region where the effec-
tive concentration is the greatest, so it will settle the slowest
of any particles of its species. The next lowest particle of
that species will settle slightly faster, and so on. Each step
increases the concentration in (0,h). If the time-step is suf-
ficiently small, this soon produces a concentration gradient
ranging fromφmax at the bottom toφ0. This is more realistic
than Kynch’s assumption that these concentrations form im-
mediately[47]. The simulation can also handle an initially
random distribution of particles. Additional details, including
algorithms for both versions, are given in[34].

The simulation is very realistic in that concentrations are
controlled directly by the solids flux. Where discontinuities
are predicted from Kynch’s theory, the simulations produce
a very sharp continuous change. Concentration gradients ex-
pand in the usual way. Bargieł et al.[34] show settling curves
for bidisperse suspensions and for a polydisperse approxi-
mation of a suspension with normal size distribution of di-
ameters. Simulations involving several million particles are
feasible. An example is shown in Section8.

Though one can sometimes follow the evolution ofΦ by
measuring the rise of the discontinuity and using(18) or its
generalization to calculate the concentrations in the upper
levels, this method is unsatisfactory for two reasons. First,
the method should automatically determine the positions of
d gra-
d t the
t of
t ature
o d
s ns
o ients
w

redict
t sions
[ or the
e g the
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[
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t
C sions
h l.
[ ys-
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h from
[ pen-
s ce of
cheme. A general introduction to central schemes is g
n [56]. However, the Kurganov–Tadmor scheme[53] is
mployed for the numerical examples in this paper.
odification of Nessyahu–Tadmor scheme has a smalle
erical viscosity and is better suited for nearly steady-

alculations.
The other method to implement the theoretical evolu

f the suspension is to use a particle-based simulation[34,51].
n this scheme, the velocity of each particle is governed b
olids concentration in a thin region (of heighth) immediately
elow that particle. The thickness,h, must be large enough
easure concentration accurately, but small enough to
hasize the concentration near the test particle. If the nu
f particles is very large, this region can be quite thin
andle the lowest particles, we setφ =φmax in an artificial
egion (of thicknessh) below the bottom[48]. The particle
n this region are uniformly distributed overh.

This specification of concentration has several advant
t corresponds to the usual idea of the dependence o
nterface velocity and ensures that the particles at the t

uniformly mixed suspension settle with the same velo
s those in the bulk of the suspension. It also incorpo

he fact that a particle approaching a flat plate or a fi
ed slows down[58–61]. Finally, it recognizes that a den
egion above a dilute one settles rapidly into or through
atter[1,18].

This scheme works as follows: The particles are initi
istributed uniformly over the total height of the column

he first time-step, all particles (of a given species) aboh
ave the same velocity, but those below settle more sl
iscontinuities. Second, the propagation of concentration
ients in the lower region may change the concentration a

op of that region[34], thereby invalidating the calculation
he concentrations in the upper levels. The important fe
f the Kurganov–Tadmor scheme[53] and the particle-base
imulation[34] is that they automatically follow the positio
f discontinuities and also propagate concentration grad
here appropriate.
A sophisticated numerical scheme has been used to p

he sedimentation of compressible polydisperse suspen
36]. Results for equal-density species are reasonable f
arly stages of sedimentation, but some issues regardin
nal stages have not yet been resolved. The case of com
ble particles of different densities appears to be difficult
ause they will, in general, have different compressibil
36].

. Fluidization

Polydisperse sedimentation models can also be us
escribe processes in which a relatively compact bed o

icles is fluidized by an upwards bulk flow of fluid[62,63].
omplete mixing and bed inversion of bidisperse suspen
ave long been of particular interest[37,64–67]. Berres et a

62] established compatibility conditions for bidisperse s
ems and later[63] extended the analysis to tridisperse
igher discrete polydisperse systems. The basic result

62,63], for simplicity presented here for a bidisperse sus
ion only, states that a necessary condition for the existen
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a fluidized bed is that the following inequalities are satisfied

d1 > d2, (19)

d2
1(ρ1 − ρf ) > d

2
2(ρ2 − ρf ), (20)

ρ1 < ρ2. (21)

Assume that the material parameters are chosen such that
(19)–(21)are satisfied. Then a completely fluidized bed made
of these species can exist if its volume fractions (φ∗

1, φ
∗
2)

satisfy[62]

φ∗
2 = −ρ1 − ρf

ρ2 − ρf
φ∗

1 + (ρ2 − ρf )d2
2 − (ρ1 − ρf )d2

1

(d2
2 − d2

1)(ρ2 − ρf )
. (22)

Obviously, the set of all states (φ∗
1, φ

∗
2) that satisfy(22)forms

a straight line in aφ1 versusφ2 diagram. The corresponding
fluidization velocity is given by

q∗ = −(1 − φ∗)µV (φ∗)(−(1 − φ∗)ρf

+ρ1(1 − φ∗
1) − ρ2φ

∗
2). (23)

According to our discussion of Section4, the MLB model for
bidisperse particles having different densities will in general
give rise to a hyperbolic-elliptic system, that is, to instability
regions in aφ1 versusφ2 diagram. In particular, these insta-
bility regions will exist for a bidisperse suspension satisfying
(19)–(21). Furthermore, consider that the governing equation
f

T s is
q ing
e n-
t , the
s me
a

-bed
s ly,
i e
c ords,
t is
w

ence
o

7

xam-
p tch
c of a
b perse
s nts of
t h
s arlier
p

7.1. Batch centrifugation of a polydisperse suspension

For tube or basket centrifuges rotating at an angular ve-
locity ω, the MLB model and its extension to compressible
sediments[36] again yield a spatially one-dimensional model
(with the radiusr as spatial coordinate) provided thatω is
large enough that the influence of the gravitational compared
to the centrifugal body force can be neglected, andω is at
the same time small enough that the effect of Coriolis forces
is not dominant[69]. The analysis of a monodisperse, ideal
suspension due to Anestis[70] and Anestis and Schneider
[71] clearly shows that curved shocks appear when the so-
lution of the centrifugation model is plotted, for example,
by iso-concentration lines of the solids volume fraction in a
time-versus-radius diagram, and that the suspension located
between the suspension-sediment and suspension-clear liq-
uid interfaces does not remain at the initial concentration;
rather, its concentration decreases as a function of time.

We present here one recent example taken from[69]
to illustrate the predictions for the MLB model includ-
ing sediment compressibility. We consider a tridisperse
suspension with particles made of the same material
(ρ1 =ρ2 =ρ3 = 1800 kg/m3) and sizesd1 = 1.19× 10−5 m,
d2 = 2−1/2d1 andd3 =d1/2 that are suspended in a fluid with
density ρf = 1000 kg/m3 and viscosityµf = 10−3 Pa s. The
suspension is assumed to initially fill a rotating tube with
i adius
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c tion
or fluidization of ideal suspensions is

∂Φ

∂t
+ ∂

∂x
(qΦ+ f(Φ)) = 0. (24)

hus, the Jacobian relevant for the stability analysi
I +Jf(Φ), whereJf(Φ) is the Jacobian of the batch settl
quation defined in(16). Since adding a multiple of the ide

ity matrix does not change the nature of eigenvalues
tability and instability regions for fluidization are the sa
s for batch settling.

One may raise the question whether the fluidized
teady states (φ∗

1, φ
∗
2) may become unstable. Interesting

t can be proved (see[63]) that, within the MLB model, th
ompletely fluidized states are always stable. In other w
he line(22) avoids the ellipticity (instability) region. Th
ill be illustrated in the next section.
Additional criteria are required to determine the sequ

f mixtures in incompletely mixed beds (see[63]).

. Numerical examples

In this section, we present three recent numerical e
les illustrating the predictions of the MLB model for ba
entrifugation of a tridisperse suspension, fluidization
idisperse suspension, and gravity separation of a bidis
uspension. In all cases, the schemes utilized are varia
he Kurganov–Tadmor scheme[53]. For simulations of batc
ettling of polydisperse suspensions, we refer to some e
apers[34,36,40,51,52,68].
nner radius (suspension meniscus) 0.05 m and outer r
.15 m. The hindered settling factor is assumed to be g
y (13)with n= 4.7 and a nominal maximum solids conc

rationφmax= 0.68. (The solids concentration attained in
ystem is actually lower.) Though it is beyond the scop
his review to elucidate the model, we finally mention
he effective solid stress function accounting for sedim
ompressibility is

e =




0 for φ ≤ φc,

σ0

((
φ

φc

)k
− 1

)
for φ > φc,

(25)

here the parameters take the valuesσ0 = 180 Pa,φc = 0.2
ndk= 6. The centrifuge is assumed to rotate at an ang
elocity ω = 25.573 rad/s and assumed to be filled initi
ith a suspension of concentrationΦ0 = (0.04, 0.04, 0.04
ig. 1 shows the numerical simulation of the centrifuga
rocess obtained by the Kurganov–Tadmor method[53].

.2. Fluidization of a bidisperse suspension

Next, we present a new simulation of the fluidization
idisperse suspension studied by Moritomi et al.[66]. The
elevant parameters areδ2 = 0.04412,ρ1 − ρf = 500 kg/m3

hollow char particles) andρ2 − ρf = 1450 kg/m3 (glass
eads).Fig. 2 shows a plot of the instability (ellipticity) re
ion for the MLB model for this system. Moreover, the po
, C, D, E and F lie on the straight line given by(22), and
orrespond to completely fluidized beds with the fluidiza
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Fig. 1. Simulation of the centrifugation of a tridisperse suspension with compressible sediment[69] showing iso-concentration lines of (a) the largest, (b) the
second-largest and (c) the smallest particles, and (d) of the cumulative solids volume fraction.

velocities qB = 1.77× 10−6 m/s, qC = 9.64× 10−4 m/s,
qD = 1.39× 10−3 m/s, qE = 1.84× 10−3 m/s and
qF = 3.56× 10−3 m/s, respectively. We use this infor-
mation to solve (24) numerically with the initial condition
φ0

1(x) = φ0
2(x) = 0.2 for 0≤ x≤L= 1m and the boundary

F pen-
s d
F ation
v

conditionf|x=0 = 0, and setting:

q = q(t) =




0 for 0 ≤ t ≤ 1500 s,

qC for 1500 s< t ≤ 3000 s,

qD for 3000 s< t ≤ 4500 s,

qE for 4500 s< t ≤ 5500 s,

qD for t > 5500 s.

(26)

Note that fort≤ 1500 s, we apply no fluidization velocity
and thus batch settling occurs.Fig. 3 shows the numerical
result for this stage by a sequence of Lagrangian paths, that
is, the trajectories of the particles separating the lowest 1%,
10%, 20%,. . ., 90%, 99% from the remaining particles of
the species considered.Fig. 4shows Lagrangian paths for the
complete fluidization process, whileFigs. 5 and 6depict the
concentration distribution for species 1 and 2, respectively.
We observe that each timeq is increased, both species initially
move upwards before gradually attaining their steady-state
positions.

7.3. Gravity separation of polydisperse suspensions

In a series of papers, Nasr-El-Din et al.[73–75] report
experimental results and present a limited mathematical
treatment for gravity separation of polydisperse systems
w t is
a ugh
w ode
ig. 2. The instability region for the MLB model and a bidisperse sus
ion studied by Moritomi et al.[66]. The collinear points B, C, D, E an
represent compositions of stationary fluidized beds at various fluidiz

elocitiesqB to qF.
ith particles differing in density. The basic equipmen
vertical column equipped with a surface source thro
hich feed suspension is fed into the unit. The desired m
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Fig. 3. Simulation of the settling of a bidisperse suspension with parameters
chosen according to Moritomi et al.[66]. The solid and dotted lines are
Lagrangian paths of species 1 and 2, respectively.

Fig. 4. Fluidization of a bidisperse suspension with parameters chosen ac-
cording to Moritomi et al.[66] and a stepwise increased fluidization velocity
q(t) given by(26).

Fig. 5. Fluidization of a bidisperse suspension with parameters chosen ac-
cording to Moritomi et al.[66]: concentration of species 1.

Fig. 6. Fluidization of a bidisperse suspension with parameters chosen ac-
cording to Moritomi et al.[66]: concentration of species 2.

of operation is that the upwards-directed flow in the column
carries the lighter and the downwards-directed flow the heav-
ier particles. Such an idealized clarifier-thickener is drawn in
Fig. 7, which is supposed to have a constant cross-sectional
areaS.This unit is supposed to treat a polydisperse suspen-
sion, and is operated in the following way, where we assume
thatx is downwards increasing. At depthx= 0, feed suspen-
sion is fed into the equipment at a volume rateQF(t) ≥ 0. The
feed suspension contains solids of species 1 toNat the corre-
sponding volume fractionsφF

1(t) to φF
N (t). At x= 0, the feed

flow divides into an upwards- and a downwards-directed bulk
flow. We assume that the underflow volume rateQR(t) ≥ 0
is also prescribed, and thatQR(t) ≤QF(t). Consequently, the
signed volume rate of the upwards-directed bulk flow is

QL(t) = QR(t) −QF(t) ≤ 0. (27)

An overflow opening is located at depthx=−1. Summariz-
ing, we prescribe the volume ratesQF(t) andQR(t) and the
feed concentrationsφF

1(t) to φF
N (t) as independent control

variables. From these we calculate the dependent control
variableQL(t) by (27).

F the
fl

ig. 7. An idealized, continuously operated clarifier-thickener unit with
ow variables for operation with a polydisperse suspension.
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For simplicity, we assume that all control variables are
constant with respect tot, and we introduceqc :=Qc/S,
c∈ {F, L, R}. Disregarding for a moment the presence of a
solids source but appropriately taking into account these bulk-
flow velocities, we can write the flux function for speciesi
as

g̃i(Φ, x) =




(qR − qF )φi for x ≤ −1,

(qR − qF )φi + fM
i (Φ) for − 1< x ≤ 0,

qRφi + fM
i (Φ) for 0< x ≤ 1,

qRφi for x > 1.
(28)

Including the feed mechanism now leads to the system of
conservation laws with source term

∂φi

∂t
+ ∂

∂x
g̃(Φ, x) = qFφ

F
i δ(x), i = 1, . . . , K, (29)

whereδ(·) denotes the Dirac direct mass. Including the singu-
lar source term into the flux function and using the Heaviside
functionH(·) leads to the equation:

∂φi

∂t
+ ∂

∂x
(g̃i(Φ, x) − qFφF

i H(x)) = 0, i = 1, . . . , K.
(30)

Adding the constant−(qR−qF)φF
i to the flux term, we can

finally state the initial-value problem of interest as

φ

g

N -
s and
d dis-
c rds-
d a
f nite
h e of
t and
d ur in
r ed in
[ d
t the
u r the
s these
a
M en-
i n the
r ac-
c yer,

and eventually break through the feed level (x= 0). (Papers
[73–75]are concerned with polydisperse suspensions, but the
shortcomings of the “source zone” concept are independent
of the aspect of polydispersivity.)

We present here one numerical example from[72] and
consider a bidisperse suspension of polysterene particles
(d1 = 3.9× 10−4 m, ρ1 = 1050 kg/m3) and glass beads
(d2 = 1.37× 10−4 m, ρ2 = 2850 kg/m3) suspended in a
salt solution (ρf = 1120 kg/m3, µf = 1.41× 10−3 Pa s).
For monodisperse suspensions of each particle species,
the hindered settling factor(13) was found to be suit-
able with the exponentsn=n1 = 5.705 and n=n2 =
5.826, respectively. The remaining parameters areδ2 =
(d2/d1)2 = 0.1234, ρ1 − ρf =−70 kg/m3, ρ2 − ρf =
1730 kg/m3 and µ= 5.879× 10−5 m4/(kg s). Thus, we
are dealing with a heavy-buoyant system. We here use(13)
with φmax= 0.7 andn= (n1 +n2)/2 = 5.765. The MLB model
for this case predicts an appreciable instability (ellipticity)
region (seeFig. 8).

The equipment used in[74] is a cylindrical clarifier-
thickener of total height 40 cm. The feed source, lo-
cated in the middle, has a rectangular cross-sectional
area S= 4.24× 10−4 m2. Nasr-El-Din et al. [74] report
experiments with many different feed and discharge
fluxes. We consider here just the case ofQF = 4.4 cm3/s,
the “split ratio” 75%, i.e., q = 7.783× 10−3 m/s and
q
0

pro-
d
W at the
h ellip-
t
f tally
[

F nsion
s

∂φi

∂t
+ ∂

∂x
gi(Φ, x) = 0, t > 0, −∞ < x < ∞ (31)

i(x,0) = φ0
i (x), −∞ < x < ∞, (32)

(Φ, x) =




(qR − qF )(φi − φF
i ) for x ≤ −1,

(qR − qF )(φi − φF
i )+fM

i (Φ) for − 1< x ≤ 0,

qR(φi − φF
i ) + fM

i (Φ) for 0< x ≤ 1,

qR(φi − φF
i ) for x > 1.

(33)

ote that the flux depends discontinuously onx. The deci
ive problem is, of course, the appropriate description
iscretization of the singular feed source term, and the
ontinuous transition between upwards- and downwa
irected flows. Nasr-El-Din et al.[73–75] assume that

eed point source is associated with a “source zone” of fi
eight within the clarifier-thickener. The obvious purpos

his zone is to act as a “buffer” between the upwards-
ownwards-directed bulk flows, so that these flows occ
egions that are spatially separated. In fact, it is assum
74] (similar statements occur in[73,75]) that “the solids an
he carrier fluid are allowed to exit through the overflow or
nderflow boundaries, but they are not allowed to ente
ource zone except through the feed stream”. However,
ssumptions are not put in mathematical terms in[73–75].
oreover, a model in which the clarification and thick

ng zones are not connected is clearly unable to explai
eally interesting cases, which occur for example if solids
umulate in the thickening zone, form a rising sediment la
R

L =−2.594× 10−3 m/s. The feed concentrations areφF
1 =

.065 andφF
2 = 0.067.

Fig. 9shows the numerical simulations of these cases
uced by a variant of the Kurganov–Tadmor scheme[53].
e observe that a stationary solution is assumed, and th

eavy species 2 does not enter the clarification zone. No
icity region appears in the numerical simulation (Fig. 9) and,
or that case, no instabilities were observed experimen
74].

ig. 8. The instability region for the MLB model and a bidisperse suspe
tudied by Nasr-El-Din et al.[74].
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Fig. 9. Simulation of the continuous separation of a bidisperse suspension of buoyant (species 1) and heavy (species 2) particles[72]. Top left: iso-concentration
lines and areas of constant composition, top right and bottom: concentration profiles at three selected times.

8. Discussion

We have already noted that Batchelor did not consider
hydrodynamic diffusion in his derivation of velocities in
polydisperse suspensions. Even if the Batchelor–Wen results
were modified to take this into account, there is no justifica-
tion for extending them to higher concentrations. Batchelor
considered only two-particle interactions. This is appropriate
for very dilute suspensions, but not for suspensions in which
the spheres are close together. For moderately concentrated
suspensions, three- and four-particle interactions are impor-
tant [76,77]. For very concentrated suspensions, lubrication
terms must be considered[61]. Thus, any extension of Batch-
elor’s work to higher concentrations is strictly empirical.

It seems to us that models based on slip velocities have
an inherent advantage over those based on an extension
of Batchelor’s equations. At low Reynolds number, all
particle–particle interactions occur via the fluid[33]. As
indicated by Eq.(7), the gravitational force on a sphere
is balanced by the force exerted on it by the fluid. Eq.(4)
shows that the upward flow of fluid is substantial whenφ is
large. Thus, it makes sense to use slip velocities to calculate
settling velocities. More importantly (as noted in Section3),
the difference between two velocities is objective, while a
single velocity is not[38]. The assumptions involved in the
derivation of the MLB equation are carefully set out in[33].

m
m et

al. [78], which was based, in part, on the work of Smith[79]
and Mirza and Richardson[80]. All of these papers predate
the advent of shock-capturing methods. Consequently, they
use(18)or its generalization to computeφi .Data from Lock-
ett and Al-Habbooby[81] were not used by Selim et al. They
state that “Smith’s binary data totalled 85 points and Mirza
and Richardson’s data consisted of 45 data points, all of which
are used here. Lockett and Al-Habbooby’s sedimentation data
concerned theinitial sedimentation rates for binary suspen-
sions and could not be used with the present model which uses
averagesettling rates” (our emphasis). As noted in Section5,
the propagation of concentration gradients can change the
concentration at the top of the region just above the packed
bed and subsequently change the concentrations in the up-
per levels[34]. The reference to average rates suggests that
concentration changes were indeed occurring. Certainly, sus-
pensions with voidage values in much of the range shown in
Figs. 3–13 of[78] are well known to produce concentration
gradients in monodisperse suspensions[48]. Simulations of
bidisperse and polydisperse suspensions also produce gradi-
ents over a wide range of concentrations. For example,Fig. 10
shows the results of a simulation[82] of the sedimentation of
the polydisperse suspension studied by Shannon et al.[4,46]
whose experimental values are also indicated. Spheres of 11
species (approximating a normal distribution with 2,048,000
spheres) were randomly distributed over the height of the col-
u d of
B

A recent review[35] compares results computed fro
any settling models with data from a paper by Selim
mn and their trajectories were calculated by the metho
argieł et al.[34] (which is summarized in Section5). Note
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Fig. 10. Simulation of the sedimentation of a polydisperse suspension. Each
upper line represents the path of the top sphere of a species. The “Smith
effect” and the very small volume of the two smallest species cause the
uppermost lines to be very close together. The line from the origin is the
position of the top of the packed bed.

that these paths, which are initially straight, become strongly
curved as concentration gradients are propagated upwards
from the bottom. Thus, it is possible that the voidage values
shown in the figures in[78] are purely nominal and not those
that actually determine the settling velocities.

This emphasizes the importance of shock-capturing[53]
and simulation[34] methods that avoid these difficulties.

Concerning the numerical results shown in Section7, it
should be pointed out that the use of the Kurganov–Tadmor
scheme (or of any other scheme) for asystemof conservation
laws is not supported by a rigorous convergence theory. In
particular, the question of a meaningful solution concept for
hyperbolic-elliptic systems, such as those appearing in Sec-
tions7.2 and 7.3, is still open. The use of these schemes as
simulation tools is essentially based on experience.
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setzbeḧaltern ver̈anderlichen Querschnitts und in Zentrifugen, D
toral Thesis, Technical University of Vienna, Austria, 1981.

71] G. Anestis, W. Schneider, Application of the theory of kinem
waves to the centrifugation of suspensions, Ing. Arch. 53 (1
399–407.

72] S. Berres, R. B̈urger, K.H. Karlsen, Central schemes and syst
of conservation laws with discontinuous coefficients modeling g
ity separation of polydisperse suspensions, J. Comp. Appl. M
164–165 (2004) 53–80.

73] H. Nasr-El-Din, J.H. Masliyah, K. Nandakumar, Continuous g
ity separation of concentrated bidisperse suspensions in a v
column, Chem. Eng. Sci. 45 (1990) 849–857.



S. Berres et al. / Chemical Engineering Journal 111 (2005) 105–117 117

[74] H. Nasr-El-Din, J.H. Masliyah, K. Nandakumar, Continuous separa-
tion of suspensions containing light and heavy particle species, Can.
J. Chem. Eng. 77 (1999) 1003–1012.

[75] H. Nasr-El-Din, J.H. Masliyah, K. Nandakumar, D.H.-S. Law, Con-
tinuous gravity separation of a bidisperse suspension in a vertical
column, Chem. Eng. Sci. 43 (1988) 3225–3234.

[76] P. Mazur, W. van Saarloos, Many-sphere hydrodynamic interactions
and mobilities in a suspension, Physica A 115 (1982) 21–57.

[77] M.T. Kamel, E.M. Tory, Sedimentation of clusters of identical
spheres. I. Comparison of methods for computing velocities, Powder
Technol. 59 (1989) 227–248;
M.T. Kamel, E.M. Tory, Erratum, Powder Technol. 94 (1997) 266.

[78] M.S. Selim, A.C. Kothari, R.M. Turian, Sedimentation of multi-
sized particles in concentrated suspensions, AIChE J. 29 (1983)
1029–1038.

[79] T.N. Smith, The differential sedimentation of particles of two differ-
ent species, Trans. Inst. Chem. Eng. 43 (1965) T69–T73.

[80] S. Mirza, J.F. Richardson, Sedimentation of suspensions of par-
ticles of two or more sizes, Chem. Eng. Sci. 34 (1979) 447–
454.

[81] M.J. Lockett, H.M. Al-Habbooby, Differential settling by size of
two particle species in a liquid, Trans. Inst. Chem. Eng. 51 (1973)
281–292.

[82] M. Bargieł, private communication, March 13, 2003.


	Applications of polydisperse sedimentation models
	Introduction
	Sedimention of dilute suspensions
	Sedimentation at higher concentrations
	Stability of suspensions
	The sedimentation process
	Fluidization
	Numerical examples
	Batch centrifugation of a polydisperse suspension
	Fluidization of a bidisperse suspension
	Gravity separation of polydisperse suspensions

	Discussion
	Acknowledgement
	References


