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Abstract

This paper reviews some recent advances in mathematical models for the sedimentation of polydisperse suspensions. Several early model
relate the settling velocity to the solids concentration for a monodisperse suspension. Batchelor’s theory for dilute suspensions predicts the
settling velocity in the presence of other spheres that differ in size or density. However, this theory is based on the questionable assumption
that identical spheres have identical velocities, and leads to significantly differing results for spheres that differ only slightly in sizy.or densi
Since Batchelor’s analysis cannot be extended to concentrated suspensions, one needs to revert to semi-empirical equations and computation:
results. A rational model developed from the basic balance equations of continuum mechanics is the Masliyah—Lockett—Bassoon (MLB)
model. A useful tool for evaluating polydisperse hindered settling models in general is a stability analysis. Basically, a model should reflect
that, for polydisperse suspensions of equal-density spheres, instabilities such as blobs or fingers during separation are never observed. Thes
structures do not form if the model equations are hyperbolic. The MLB model provably has this property, in contrast to certain extrapolations of
the Batchelor model. The sedimentation process of a suspension can be simulated by either solving the conservation equations numerically by
using a sophisticated scheme for conservation laws, or by using a particle-based method. Numerical examples illustrating both methodologies
are presented, with an emphasis on fluidization problems.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction presence of particles affects both the density and viscosity
of the suspension (see, for examglg), Robinson8] sug-
Despite the attention paid to sedimentation of monodis- gested, as early as 1926, a modification of Stokes’ law in
perse suspensions, polydisperse suspensions are far morehich the density and viscosity of the suspension replace
common. Some spheres are so nearly uniform that theythose of the fluid. For very dilute suspensions, Kermack et al.
are essentially identicdl—3]. However, many experiments  [9] and Batchelof10] derived equations of the form
with “monodisperse suspensions” involve spheres that have
an approximately normal distribution with a considerable v(®) = uoo(1 —n¢), 1)
spread in diametefd,5]. Similarly, each species in a “bidis- . ) . .
perse” or “tridisperse” suspension often has a distribution of Wherev is the velocity of a sedimenting sphere,
diameterg6]. Aped?
The relationship between settling velocity and solids con- y,, = — rs (2)
centration in monodisperse suspensions has been the subject 18us

of many theoretical and empirical studies. Noting that the 5 the Stokes velocity (whera p is the solid—fluid density
- difference g the acceleration of gravitg the diameter of the
* Corresponding author. Present address: Departmento de Irigenier sphere angk is the dynamic viscosity of the fluid), angis
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buerger@mathematik.uni-stuttgart.de (Rir@er), sherpa@nbnet.nb.ca [11], Richardson and ZaKi12], and Barnea and Mizrahi
(E.M. Tory). [13]. Of these, the best known and most widely used is the
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Richardson—Zaki equation whereuy is the Stokes velocity of theh speciesg; the
; concentration of th¢th species, and the coefficiertig are
u($) = uoo(1—¢)". ©) the so-called “Batchelor coefficients”. While Batchelor and

Wen [20] calculated results for many different combina-
tions of size and density, the values for identical and nearly
identical spheres are of special interest because they high-
light the importance of their assumptions. They obtained
}he valuesSj =—6.55 for A.=1 andy=1, §;=-5.6 for
Ax~1andy=1 andS;=-2.6 for A=1 andy ~ 1, where
r=di/di, y:=(oj — pr)l(0i — pf), di and pj are the size and
lthe density of speciels respectively, ang; is the density
of the fluid. These strange results arise from their assump-
tion that identical spheres have identical velocities while
spheres that differ slightly in either size or density have
slightly different velocities. Tory and KamgB] pointed
out that identical spheres do not have identical velocities
[17]. Indeed, the effects of very small differences in size
and/or density are completely dwarfed by the huge influ-
ence of local configuratiofil,16,18,21] This throws into
question Batchelor's markedly different results for almost
identical situations. Indeed, Tory and Kanj8] maintain
g=(1—¢)vf+prv1+ -+ pxvg =0, (4) that hydrodynamic diffusion makes the cases (, y =1),
(A=1,y=1), .=1,y~1), and { =1, y~1) essentially
whereq is the volume—average velocity of the suspension, the same.
vt the velocity of the fluid,¢x and v; the volume frac- In fact, all of these cases at large Peclet numbers must
tion and the velocity of solids speciésk=1,..., K, and  pe compared with the Richardson—Zaki equation for small
¢ =¢1+ -+ ¢k is the total solids volume fraction. Con-  yalues of¢. Batchelor's equation (witlj = —6.5 for A ~ 1,
dition (4) is obvious for a contained suspension and serves y ~ 1) appears to work well at small Peclet numbers in the
as the definition of batch sedimentation. Since increasing thegpsence of interparticle forcgg]. In this case, Brownian
size of a cluster increases its velocity, E4) must be im-  motion ensures that the random distribution of sphere centers
posed onan Unbounded SUSpenSion to Obtain a f|n|te Velocity.remains uniform_ Hydrodynamic diffusion is Very important
Batchelor[10] also usedy=0 in his derivation of the mean  at |arge Peclet numbers, but is not taken into account in the
particle velocity in a monodisperse suspension. Unlike many Batchelor-Wen analysis. Since this diffusion depends on
others, who assumed a lattice or some other ordered configusgme regions of the suspension being denser than ¢&idrs
ration, he assumed that the suspension was disordered. Thighe steady-state distribution is not obvious. A further diffi-
assumption has been confirmed by many direct observationseylty is that Eq(6) applies only to very dilute suspensions, but
[16-18] Batchelor’s major contribution was his recognition  thjs is the range in which “cluster settling” occiits22—24]
of the importance of the deviatoric stress tensor: Hence, calculated and measured velocities may not §gfree
especially when the diameter of the container is large com-
pared to the particle diamet@3,25] Typically, the interface
which is defined in both the fluid and solid parts of the dis- Velocity is less than the mean velocity of the spheres in the
persion and has the Newtonian forms; in the fluid, where ~ interior[1,26], which may be greater than the Stokes velocity
gj is the rate of strain tensor. In E(), 8;j is the Kronecker  [24,26]
delta. Batchelor noted thdj (x) is a stationary random func-
tion of position in a statistically homogeneous suspension,
and so has constant mean. After an extensive analysis usin@. Sedimentation at higher concentrations
these assumptions and the probability distribution of the sep-
aration of two spheres, he obtained Ef). He noted that Eq.(4) and the condition odj(x) apply at all concentra-
assuming an ordered structure led to a completely differenttions, but the type of analysis used by Batchelor applies only
dependence o, name|y¢1/3_ He also recognized that the O dilute suspensions. Geigeiiller and Mazuf27] studied
value ofn depends on the assumed distribution of sphere the sedimentation of spherical particles of common diame-

Eq. (3) is often used for slightly polydisperse suspensions.
Then, the value ofi,, is determined by extrapolation and
compared to the value calculated for some representative di-
ametei4,14]. The value oh depends on the Reynolds num-
ber and, to a lesser extent, on the sphere—cylinder diamete
ratio. Most experimental values range from 4.6 to 5.5 for
creeping flow. Scotf15] suggests 4.7 as the most appropri-
ate value. The reasons for the considerable variation are no
entirely understood, sois appropriately chosen as the value
that gives the best fit.

2. Sedimention of dilute suspensions
Kermack et al[9] in 1929 appear to have been the first to

use the condition that the net flux in batch sedimentation is
zero. In modern terminology:

dij = 0ij — 3810k, )

centers. terd in an incompressible fluid of viscosity; in a closed
A similar analysis of polydisperse suspensifi;20]led container. Starting from the pressure tensor in the fluid they
to showed that the friction force that the fluid exerts on a sphere

in a suspensiorequals the buoyancy-corrected gravitational
Vi = Uooi(L+ Siadr + - + Sikdk), i=1,...,K, (6) force on it. For a polydisperse suspension, this is
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14 kth species will indeed move upwards. However, this result

/Fk(r)dr - Ed’?(pk = P1)g. () is not an assumption, but a consequence.
. . , The fundamental assumption for the rigorous derivation

Note that they use the density of the fluid, not the suspension. i35 361t the MLB [31,32]and the related Patwardhan—Tien
This d.'St'nCtmn IS important in view of the_ controversy sur- model[37]is that the solid—fluid interaction force between the
roundmg_thg use of the suspension density in sedlmentatlonith species and the fluid is given by a concentration-dependent
and fIU|d|zaTt|on[28]. of course,.Fk(r) depends. or = (¢1, factor multiplying the slip velocity, or solid—fluid relative ve-
¢2. ..., ¢k}, the vector of solids concentrations of tHe locity v; — vt. (This approach is in agreement with the prin-
Species. In prmmp_l_e, the derivation by Gelgan_rer and ciple of objectivity, which states that constitutive equations
Mazur yields velocities for concentrated suspensions, but theshould be stated in terms of objective quantities, and it is well

splutlonhrap|dly b_e_corlnes mFractabIe for non_—d|lu'|[e suslpen- known that the difference between two velocities is objective,
sions. Thus, empirical equations or computational results are,, ..o o single velocity is nof@8].) Inserting these assump-

requwe_d at higher concentrations, , tions into the reduced momentum balances for each solids
Davis and Geco]29] postulated that Batchelor’s results species and the fluid and choosing a Richardson—p4i

could be gxtended to higher concentrations. They 'ntrOduceddependence, viz.
the equation

—o)Y2 <<
V(®) = {(1 ) if 0 <¢ < dmax (13)

K
v = uooi(L— @) 75 | 14+ (Sij — Side; | - 0 otherwise
j=1 we unequivocally obtain Eq10). Nevertheless, Ha and Liu
i=1...,K (8) [39] state that the main assumption of models based on slip
R ] ) ~velocities is that “the particle volume fractions are uniform
This simplifies to Eq(3) for monodisperse suspensions (with i any given region”. This is incorrect, of course. Moreover,
n=—Sj). For very small values of, terms of second order i petrays a fundamental misunderstanding of the nature of
can be neglected, and E@) reduces to E6). Richardson  padels. A model is simply a means of predicting settling
and Shabj30] stated that the settling velocities in a polydis- ye|ocities from solids concentrations, i.e(@). It is beyond
perse suspension could be represented as the scope of modeling to assume that the concentrations are
v = tor(l— )", k=1,....K ) umform in any given region; the concentrations are deter-
mined by the evolution of the suspension. In some cases, the
However, this equation does not adequately account for concentrations remain constant in a certain region; in other
differences in the return flow of fluid caused by the cases, they do not.

downward movement of different species. The appropri-  Finally, we mention that it is necessary to explicitly “build
ate generalization of the Richardson-Zaki equation is the in”to the mathematical model that the solution should assume
Masliyah—Lockett—-Bassoon (MLB) equati§3il—33} physically relevant values only. This is most conveniently

2 done by setting the hindered settling factor to zero wherever
ve = (1~ ¢) necessary, as is done in H3).

K Whenp; = p2 = --- = pg, EQ.(10) reduces to
Sk(or — p(®) =Y 8,0i(p; — p(® _
X k(pk p( )) J_Zl j¢/(pj 10( )) ’ v = vk(¢) — uool(l _ ¢)n 1(8k _ (31¢1 NI 8K¢K))7
k=1,....,K 14)

k=1,...,K, (10)
as the velocity of th&th specie$40]. Eq.(14)clearly reduces
to Eq.(3) when only a single species is present. Thus, Eqs.
o(D):=pt(1 — }) + p1o1, + - - - + px ok, (11) (3), (14) and (10yepresent a consistent, unified approach to
sedimentation.

Patwardhan and Ti€37] proposed a model in which the
effective solids concentration is different for each species.
This could be more accurate if steric hindrance causes some
small particles to be carried downward with the larger ones
rather than moving freely in the liquid. However, as noted
below, it makes the analysis of stability more difficult.

where

_‘ng = — gd% _ Uool
dz’ T 18w pr—pr

Ok: (12)
Here,u1 is the Stokes velocity of the largest species. Note
that U1 <0 whenp; — p; >0. As in the Richardson—Zaki
equation, the value af can be chosen to fit the experimental
data[34].

Contrary to the statementin arecent revj8j, Masliyah
did not assume that “the slip velocity (velocity of particle 4. Stability of suspensions
relative to the liquid) is governed by the. and the difference
between the particle and suspension densities”. Of course, Eq. Analyses of settling suspensions are usually one-
(10) shows thapk < p(®) andpj > p(P), j # k, imply that the dimensional, so it is important to identify suspensions in
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which a three-dimensional analysis is required. Thanks As there is no creditable experimental evidence for such
largely to the work of Weiland and his collaboratf44—43] instability, the Davis—Gecol equation is inferior to the MLB
it became apparent that suspensions of particles of greatlyequation in this respect. It seems to us that these qualitative
differing densities settle in an anomalous manner. In partic- predictions are extremely important. For example, if some
ular, instability phenomena such as blobs and fingering aredegree of instability is present in a bidisperse system in
evident. In the most extreme cases, bidisperse suspensions ofhich p1 > p2 > p(®), species 1 may stream through species
heavy and buoyant particles segregate into upward and down2 as both move downward. Then, we should not expect
ward streams, resulting in a much faster separation than thatagreement with results from a one-dimensional analysis.
predicted from a one-dimensional analysis. Thus, simple comparisons of calculated and experimental
Batchelor et al[44] formulated a stability criterion for  results are an inadequate criterion for evaluating models
bidisperse suspensions. Biesheuvel g¢&l] used this crite- ~ when particle densities differ substantially. Comparisons of
rion to test the predictions of the MLB and Patwardhan—Tien experimental and theoretical results for an equal-density case
models. Using the MLB and Davis—Gecol modelg§iyger et are always appropriate. However, such comparisons should

al. [33] showed that some flux-density vectors be based on the entire settling curves and, if possible, the rise
T of the packed bed. In this regard, we note that recent work by
1(@) = (1(®). fo(). ... [k (®)) Bargiet et al.[34] shows close agreement between Hdft)
cause the first-order system of conservation laws and the experimental results of Shannon e{4HK6]. See
Section8 for the risks involved in using a cited concentration
9%i + ofi(®) -0 i=1 K (15) dependence as the only basis for evaluation of mdaéls
ot 0x ’ B

to be non-hyperbolic, or to be of mixed hyperbolic—elliptic

type in the bidisperse case. The criterion for ellipticity is 5. The sedimentation process

equivalent to the stability criterion. They showed that loss of

hyberbolicity, indicated by the occurrence of complex eigen- ~ Sedimentation is the evolution df(zt), 0<z<H, t>0,

values of the Jacobian of E(L5) from @0 to @max(2), Where @may is the value of® when
¢ =¢max- This evolution is governed by the solids flux vector
Jf(@):=<afi(¢)> , (16) f=(fy, f1, ..., f)T, wheref=¢yvr. The two essentials for
0br ) ik=1,..K predicting this evolution are the model equation and a method

ofimplementing the changes produced by the flux. The global

can be viewed as an instability criterion for arbitrary poly- : : . : .
) - . .7 .7 . behavior of sedimenting monodisperse suspensions can be
disperse systems. For tridisperse suspensions, this criterion

. . ... deduced from the flux pld#6—49] but this approach is not
can be evaluated by a convenient calculation of a discrimi- available for polvdisperse suspensions. The settling process
nant. Birger et al[33] proved that the MLB equation predicts polydisp P : 9p

stability for all bidisperse suspensions in which the spheres s still _governed by _the solids flux, t.JUt the process is more
. ) . complicated. In particular, the evolution depends not only on
have the same density, and conjectured that all polydlspersc—:‘th(_}totaI fuxf=f1 +fo + - - - +f. but also On the components
suspensions of this kind would be stable. This conjecture was TR Ko P
proved by Berres et dI36]. The generic assumption to ensure

hyperbolicity and hence stability is In one of the earliest treatments of a polydisperse suspen-

sion, Smith[50] derived the increases in the concentrations
V(¢) > 0, V') <0 for 0< ¢ < dmax (17) of slower-settling species in the upper regions. For simplicity,

consider the sedimentation of a bidisperse suspension. The
wheregmax is the maximum total solids concentration fea- uppermost region contains only the slower settling species
sible in the polydisperse system. Thus, the form shown in designated as species 2. Suppose that the solids concentra-
Eq. (14) is not the only one that ensures stability. However, tjons of both species remain constant in the region above the
Eq.(17)is satisfied by/(¢) = (1—¢)"?,n>2,and, asnoted  packed bed. The faster settling species (designated by 1) is
above, this form s consistent with the Richardson—Zaki equa- absent from the top level (designated by +). Thus, the ve-
tion. The important pointis that the proof at presentis limited |ocity of species 2 there i32(¢§r). Below the mixed-small

to functions of the fornV(¢) only. Specifically, itis notclear  interface, the velocities arex(@°) andv1(®°). A material
to us at the moment whether it may be extended to the hin- palancg50] yields

dered settling factors of the Patwardhan—Tien mqdaé],

which depend o rather tharp, and differ for each particle  ¢3 [v2(¢3) — v1(@°)] = ¢I[v2(2°) — v1(29)]. (18)

species. At present, this model appears to be too complicated

for generalizations of the stability analysid#8,36], so only Species 2 settles more rapidly in the upper region than in the

numerical calculations are possible. original suspension. Since downward velocities are negative,
In contrast to the MLB equation, the Davis—Gecol v2(¢3_) < vo(Y). From Eq.(18), ¢§ > qbg. This “Smith ef-

equation predicts regions of instability for some bidisperse fect” can be seen in many simulatiof8,36,40,51,52]A

systems in which both species have the same de[&fy similar derivation can be applied to any discrete polydisperse
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suspension. Bargiet et §B4] derived the same result from  because they are affected by particles in the artifical sub-

an analysis of particle paths. layer. The lowest particle is in the region where the effec-
Successful prediction of suspension evolution requires tive concentration is the greatest, so it will settle the slowest
that the scheme proceed automatically frafl to @max. of any particles of its species. The next lowest particle of

There are two main methods of implementing the theoretical that species will settle slightly faster, and so on. Each step
evolution of the suspension. One is to use a sophisticatedincreases the concentration in {f), If the time-step is suf-
numerical scheme that tracks discontinuities automatically ficiently small, this soon produces a concentration gradient
[36,53-55] We briefly discuss these schemes, following ranging fromgmax at the bottom t@g. This is more realistic
the introduction of[52]. These schemes, which will pro- than Kynch’s assumption that these concentrations form im-
duce accurate approximations of discontinuous solutions mediately[47]. The simulation can also handle an initially
to Eq. (15) without explicitly using jump conditions or  random distribution of particles. Additional details, including
shock-tracking techniques, are calleshockcapturing. algorithms for both versions, are given[B#].

The last three decades have seen tremendous progress in The simulation is very realistic in that concentrations are
the development of shock-capturing schemes for systemscontrolled directly by the solids flux. Where discontinuities
of conservation laws; see for examd®6,57] Roughly are predicted from Kynch's theory, the simulations produce
speaking, shock-capturing schemes may be classified intoa very sharp continuous change. Concentration gradients ex-
two categories: central and upwind. The main disadvantagepand in the usual way. Bargiet et #84] show settling curves

of upwind schemes is the difficulty of solving the Riemann for bidisperse suspensions and for a polydisperse approxi-
problem exactly or approximately, especially for compli- mation of a suspension with normal size distribution of di-
cated systems of conservation laws. In fact, the (exact orameters. Simulations involving several million particles are
approximate) solution of the Riemann problem fd5) feasible. An example is shown in Secti8n

combined with the flux vector defined {§0) has not yet Though one can sometimes follow the evolutiornfoby
been determined. For this reason, central schemes haveneasuring the rise of the discontinuity and us{fg) or its

so far been preferred. In the 1990s, this class of schemegyeneralization to calculate the concentrations in the upper
received (in part renewed) interest following Nessyahu and levels, this method is unsatisfactory for two reasons. First,
Tadmor’s [54] second-order sequel of the Lax—Friedrichs the method should automatically determine the positions of
scheme. A general introduction to central schemes is givendiscontinuities. Second, the propagation of concentration gra-
in [56]. However, the Kurganov—Tadmor scher&8] is dients in the lower region may change the concentration atthe
employed for the numerical examples in this paper. This top of that regiori34], thereby invalidating the calculation of
modification of Nessyahu—Tadmor scheme has a smaller nu-the concentrations in the upper levels. The important feature
merical viscosity and is better suited for nearly steady-state of the Kurganov—Tadmor scherf&3] and the particle-based

calculations. simulation[34] is that they automatically follow the positions
The other method to implement the theoretical evolution of discontinuities and also propagate concentration gradients
ofthe suspensionisto use a particle-based simulE3éb 1] where appropriate.

Inthis scheme, the velocity of each particle is governed bythe A sophisticated numerical scheme has been used to predict
solids concentration in a thin region (of heigitmmediately the sedimentation of compressible polydisperse suspensions
below that particle. The thickneds,must be large enoughto  [36]. Results for equal-density species are reasonable for the
measure concentration accurately, but small enough to em-early stages of sedimentation, but some issues regarding the
phasize the concentration near the test particle. If the numberfinal stages have not yet been resolved. The case of compress-
of particles is very large, this region can be quite thin. To ible particles of different densities appears to be difficult be-
handle the lowest particles, we st ¢max in an artificial cause they will, in general, have different compressibilities
region (of thicknes#) below the botton48]. The particles [36].
in this region are uniformly distributed ovar

This specification of concentration has several advantages.
It corresponds to the usual idea of the dependence of the6. Fluidization
interface velocity and ensures that the particles at the top of
a uniformly mixed suspension settle with the same velocity = Polydisperse sedimentation models can also be used to
as those in the bulk of the suspension. It also incorporatesdescribe processes in which a relatively compact bed of par-
the fact that a particle approaching a flat plate or a fixed ticles is fluidized by an upwards bulk flow of flu[62,63]
bed slows dowri58—-61] Finally, it recognizes that a dense Complete mixing and bed inversion of bidisperse suspensions
region above a dilute one settles rapidly into or through the have long been of particular inter¢37,64—67] Berres et al.
latter[1,18]. [62] established compatibility conditions for bidisperse sys-

This scheme works as follows: The particles are initially tems and latef63] extended the analysis to tridisperse and
distributed uniformly over the total height of the column. In higher discrete polydisperse systems. The basic result from
the first time-step, all particles (of a given species) abdove [62,63] for simplicity presented here for a bidisperse suspen-
have the same velocity, but those below settle more slowly sion only, states thata necessary condition for the existence of
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a fluidized bed is that the following inequalities are satisfied 7.1. Batch centrifugation of a polydisperse suspension

dy > da, (19) For tube or basket centrifuges rotating at an angular ve-

df(pl — pf) > d%(pz — 0f), (20) locity w, the MLB model and its extension to compressible
sediment$36] again yield a spatially one-dimensional model
pL < p2. (21) (with the radiusr as spatial coordinate) provided thatis

Assume that the material parameters are chosen such thagrge enough that the influence of the gravitational compared
(19)—(21)are satisfied. Then a completely fluidized bed made to the centrifugal body force can be neglected, anis at

of these species can exist if its volume fractions, ¢3) the same time small enough that the effect of Coriolis forces
satisfy[62] is not dominan{69]. The analysis of a monodisperse, ideal
) ) suspension due to Anestig0] and Anestis and Schneider

o5 = _P1—pi oF + (p2 — pr)d5 — (p1 — Pf)dl_ (22) [71] clearly shows that curved shocks appear when the so-
02 — Pt (d% — df)(pg — pf) lution of the centrifugation model is plotted, for example,

by iso-concentration lines of the solids volume fraction in a
time-versus-radius diagram, and that the suspension located
between the suspension-sediment and suspension-clear lig-
uid interfaces does not remain at the initial concentration;

Obviously, the set of all stategy, ¢5) that satisfy(22) forms
a straight line in a1 versusp, diagram. The corresponding
fluidization velocity is given by

g =—Q—¢ V(") (=1 - ¢")pt rather, its concentration decreases as a function of time.
We present here one recent example taken ff68]
k *
+oul = $1) = p262). (23) to illustrate the predictions for the MLB model includ-
According to our discussion of Sectidnthe MLB model for ing sediment compressibility. We consider a tridisperse

bidisperse particles having different densities will in general suspension with particles made of the same material
give rise to a hyperbolic-elliptic system, that is, to instability (01= 2= p3=1800 kg/mi) and sizesd; =1.19x 10 °m,
regions in apy versusp, diagram. In particular, these insta-  dz = 2-Y2dy anddz =dy/2 that are suspended in a fluid with
bility regions will exist for a bidisperse suspension satisfying density p; =1000kg/n? and viscosityu; =103 Pas. The
(19)—(21) Furthermore, consider that the governing equation suspension is assumed to initially fill a rotating tube with

for fluidization of ideal suspensions is inner radius (suspension meniscus) 0.05m and outer radius
ab 3 0.15m. The hindered settling factor is assumed to be given
o + a—(qqﬁ +f(®)) = 0. (24) by (13) with n=4.7 and a nominal maximum solids concen-

X

trationmax=0.68. (The solids concentration attained in the
Thus, the Jacobian relevant for the stability analysis is system is actually lower.) Though it is beyond the scope of
ql +Ji(P), whereJi() is the Jacobian of the batch settling  this review to elucidate the model, we finally mention that
equation defined i(iL6). Since adding a multiple of the iden-  the effective solid stress function accounting for sediment
tity matrix does not change the nature of eigenvalues, the compressibility is

stability and instability regions for fluidization are the same

as for batch settling. 0 for ¢ < ¢c,
One may raise the question whether the fluidized-bed ¢, = #\* (25)
steady statesgf, ¢5) may become unstable. Interestingly, 0] <¢c) —1) for ¢ > ¢,

it can be proved (sef§3]) that, within the MLB model, the
completely fluidized states are always stable. In other words, where the parameters take the valugs- 180 Pa,¢.=0.2
the line (22) avoids the ellipticity (instability) region. This  andk=6. The centrifuge is assumed to rotate at an angular

will be illustrated in the next section. velocity w =25.573rad/s and assumed to be filled initially
Additional criteria are required to determine the sequence with a suspension of concentratidr = (0.04, 0.04, 0.04).
of mixtures in incompletely mixed beds (si3]). Fig. 1 shows the numerical simulation of the centrifugation

process obtained by the Kurganov—Tadmor metaag
7. Numerical examples 7.2. Fluidization of a bidisperse suspension

In this section, we present three recent numerical exam-  Next, we present a new simulation of the fluidization of a
ples illustrating the predictions of the MLB model for batch  pjdisperse suspension studied by Moritomi et{@6]. The
centrifugation of a tridisperse suspension, fluidization of a relevant parameters ag =0.04412, p1 — p;s =500 kg/n¥
bidisperge suspension, and gravity separgtion ofa bid?sperse(houow char particles) andp — pr =1450kg/n? (glass
suspension. In all cases, the SChemeS- Utlllze-d are variants Obeads)j:ig_ 2 shows a p|0t of the |n5tab|||ty (e|||pt|C|ty) re-
the Kurganov—Tadmor scherft8]. For simulations of batch  gion for the MLB model for this system. Moreover, the points
settling of polydisperse suspensions, we refer to some earlierg, c, D, E and F lie on the straight line given £82), and
paperg34,36,40,51,52,68] correspond to completely fluidized beds with the fluidization
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Fig. 1. Simulation of the centrifugation of a tridisperse suspension with compressible seffifjesftowing iso-concentration lines of (a) the largest, (b) the
second-largest and (c) the smallest particles, and (d) of the cumulative solids volume fraction.

velocities gg=1.77x10%m/s, qc=9.64x 104 m/s,
ap=1.39x 103 m/s, ge=1.84x 103m/s and
gr=3.56x 10~ 3m/s, respectively. We use this infor-
mation to solve (24) numerically with the initial condition
¢9(x) = ¢9(x) = 0.2 for 0<x<L=1m and the boundary

1

¢2
0.9

instability region

\
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(1T

0.4
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0.2

0.1

B
0
0 01 02 03 04 05 06 0.7 08 09¢,1

Fig. 2. The instability region for the MLB model and a bidisperse suspen-
sion studied by Moritomi et a[66]. The collinear points B, C, D, E and

F represent compositions of stationary fluidized beds at various fluidization
velocitiesgg to gg.

conditionf|y=¢ = 0, and setting:

for 0<t < 1500s

for 1500s<r < 3000s
for 3000s< t < 45005
for 4500s< r < 55005
for + > 5500s

q=q(t) = (26)

Note that fort <1500s, we apply no fluidization velocity
and thus batch settling occufsig. 3 shows the numerical
result for this stage by a sequence of Lagrangian paths, that
is, the trajectories of the particles separating the lowest 1%,
10%, 20%,. .., 90%, 99% from the remaining particles of
the species considerdeig. 4shows Lagrangian paths for the
complete fluidization process, whikégs. 5 and @lepict the
concentration distribution for species 1 and 2, respectively.
We observe that each timyégs increased, both speciesiinitially
move upwards before gradually attaining their steady-state
positions.

7.3. Gravity separation of polydisperse suspensions

In a series of papers, Nasr-EI-Din et f13—75] report
experimental results and present a limited mathematical
treatment for gravity separation of polydisperse systems
with particles differing in density. The basic equipment is
a vertical column equipped with a surface source through
which feed suspension is fed into the unit. The desired mode
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Fig. 6. Fluidization of a bidisperse suspension with parameters chosen ac-
cording to Moritomi et al[66]: concentration of species 2.

|

0 200 400 600 800 t[s] 1000

Fig. 3. Simulation of the settling of a bidisperse suspension with parameters Of operation is that the upwards-directed flow in the column
chosen according to Moritomi et &66]. The solid and dotted lines are  carries the lighter and the downwards-directed flow the heav-
Lagrangian paths of species 1 and 2, respectively. ier particles. Such an idealized clarifier-thickener is drawn in
Fig. 7, which is supposed to have a constant cross-sectional
areaS. This unit is supposed to treat a polydisperse suspen-
ol 1 sion, and is operated in the following way, where we assume
thatx is downwards increasing. At depxt 0, feed suspen-
sion is fed into the equipment at a volume r@gt) > 0. The
feed suspension contains solids of speciesNLabthe corre-
sponding volume fractions! (1) to ¢, (r). At x=0, the feed
flow divides into an upwards- and a downwards-directed bulk
flow. We assume that the underflow volume rég(t) >0

is also prescribed, and th@i(t) < Qr(t). Consequently, the
signed volume rate of the upwards-directed bulk flow is

OL(t) = Or(r) — Qr(t) < 0. (27)

An overflow opening is located at deptls —1. Summariz-
: ing, we prescribe the volume rat@s(t) and Qr(t) and the
“o 1000 2000 3000 4000 5000 ¢[s] 6000 feed concentration&f(t) to qbl'i,(t) as independent control

variables. From these we calculate the dependent control
Fig. 4. Fluidization of a bidisperse suspension with parameters chosen ac-yariableQ (t) by (27)_
cording to Moritomi et al[66] and a stepwise increased fluidization velocity

q(t) given by(26).
overflow
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Fig. 5. Fluidization of a bidisperse suspension with parameters chosen ac-Fig. 7. An idealized, continuously operated clarifier-thickener unit with the
cording to Moritomi et al[66]: concentration of species 1. flow variables for operation with a polydisperse suspension.
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For simplicity, we assume that all control variables are and eventually break through the feed levet Q). (Papers
constant with respect t6, and we introduceg. ;= Q¢/S [73—75]are concerned with polydisperse suspensions, but the
ce{F, L, R}. Disregarding for a moment the presence of a shortcomings of the “source zone” concept are independent
solids source butappropriately taking into account these bulk- of the aspect of polydispersivity.)

flow velocities, we can write the flux function for species We present here one numerical example friai2] and
as consider a bidisperse suspension of polysterene particles
_ ' _ (d1=3.9x10%m, p1=1050kg/n¥) and glass beads
(Gr = ar)d: " for x = -1, (dr=1.37x 10%m, p»=2850kg/nf) suspended in a
2@ x) = (gr —qr)pi + ;7 (®) for —1<x <0, salt solution pr=1120kg/n3, u;=1.41x 10-3Pas).
qrdi + fM(P) for 0 <x <1, For monodisperse suspensions of each particle species,
qrdi for x > 1. the hindered settling factof13) was found to be suit-
(28) able with the exponentsn=n;=5.705 and n=n;=

Including the feed mechanism now leads to the system of 9-826, respectively. The remaining parameters &re

conservation laws with source term (do/dh)?=0.1234,  p1— ps=—T70Kkg/n?, p2— pi=

s 8 1730kg/n? and 1 =5.879x 10 °m?*(kgs). Thus, we

% 4 87§(q>, x) = qF¢}:5(X), i=1.... K, (29) are dealing with a heavy-buoyant system. We here(1i3¢
t x

with ¢max=0.7 andn=(ny + np)/2=5.765. The MLB model
wheres(-) denotes the Dirac direct mass. Including the singu- for this case predicts an appreciable instability (ellipticity)
lar source term into the flux function and using the Heaviside region (sed~ig. 8).
functionH(-) leads to the equation: The equipment used ifi74] is a cylindrical clarifier-
_ thickener of total height 40cm. The feed source, lo-
0 . : .
o . cated in the middle, has a rectangular cross-sectional
d (30) area S=4.24x 10~ m?. Nasr-El-Din et al.[74] report

) F experiments with many different feed and discharge
Adding the constant-(gr — gr)¢; to the flux term, we can  fxes. We consider here just the case@¢f=4.4cnf/s,

J . .
+£(g,-(45,x)—qp¢,'-:H(x)):O, i=1...,K

finally state the initial-value problem of interest as the “split ratio” 75%, i.e., gr=7.783x 10-3m/s and
a9 oL =—2.594x 103 m/s. The feed concentrations apf =
g + agi((p, x) =0, >0 —oc0o<x< (31) 0.065 andq&g — 0.067.
0 Fig. 9shows the numerical simulations of these cases pro-
$i(x,0) = ¢; (x), —00 <x < o0, (32)  duced by a variant of the Kurganov—Tadmor scheB8j.
We observe that a stationary solution is assumed, and that the
(gr — qr)(@i — ¢F) for x < -1, heavy species 2 does not enter the clarification zone. No ellip-

(qr — qF) (i — ¢l!:)+fiM (®) for —1<x <0, ticity region appears in the numerical simulatiéig. 9) and,

g(d, x) = for that case, no instabilities were observed experimentally
qr(pi — o) + M(@) for 0 <x <1, [74]
qr(¢; — qb!:) for x > 1. (33) 0.7
Note that the flux depends discontinuously>rThe deci- & E)(]S
sive problem is, of course, the appropriate description and ’
discretization of the singular feed source term, and the dis- )
continuous transition between upwards- and downwards- 0.5 ¢=0Q7
directed flows. Nasr-El-Din et al.73—-75] assume that a ‘
feed point source is associated with a “source zone” of finite 0.4 '
height within the clarifier-thickener. The obvious purpose of _ elliptic
this zone is to act as a “buffer” between the upwards- and 0.3 (mStablhtY)
downwards-directed bulk flows, so that these flows occur in \ resion
regions that are spatially separated. In fact, it is assumed in 0.2 \ /
[74] (similar statements occur [[@3,75) that “the solids and \__/ .
. . . hyperbolic
the carrier fluid are allowed to exit through the overflow or the 0.1 (stability)
underflow boundaries, but they are not allowed to enter the region
source zone except through the feed stream”. However, these 0 |
assumptions are not put in mathematical termfg/B+75] 0 01 02 03 04 05 06 07
Moreover, a model in which the clarification and thicken- 1 [=]

ing zones are not connected is clearly unable to explain the

really intereSting cases, which occur for .e>.(ample.if solids ac- Fig. 8. Theinstability region for the MLB model and a bidisperse suspension
cumulate in the thickening zone, form a rising sediment layer, studied by Nasr-EI-Din et aj74].



114 S. Berres et al. / Chemical Engineering Journal 111 (2005) 105-117
4l g 0.20
X / // # =0.185 01,9 t=2>5s
I // = - $2=0 ]
=
- oo 0.15|
4 h=0
t=10s t=50s
OKS 0.10f .
A} {
by \ ¢1=0.074 /
$o = 0.046 |
% ’r'
Y oms 0.05| /
- 5= 0038 520090 |
1 T T TR T T L
(@) 0 10 20 30 40 50 60 70 t 80 (b) -0.2
0.20 0.20 -
61,0, t=15s ¢1,¢2ﬁ‘ t=80s
0.15 0.15
1 2}
o10f |, 0.10f —————— 4]
// — [
[/
IV I
0.05) P } 0.05
I |
|
G I r\ 1\ O L L L L
(c) -0.2 0 x[m] 02 (d) -0.2 x[m] 02

Fig. 9. Simulation of the continuous separation of a bidisperse suspension of buoyant (species 1) and heavy (species[Zppartplet: iso-concentration
lines and areas of constant composition, top right and bottom: concentration profiles at three selected times.

al.[78], which was based, in part, on the work of Sniif8]
and Mirza and Richardsd®0]. All of these papers predate
We have already noted that Batchelor did not consider the advent of shock-capturing methods. Consequently, they
hydrodynamic diffusion in his derivation of velocities in use(18)or its generalization to compugg. Data from Lock-
polydisperse suspensions. Even if the Batchelor—Wen resultsett and Al-HabboobyB81] were not used by Selim et al. They
were modified to take this into account, there is no justifica- state that “Smith’s binary data totalled 85 points and Mirza
tion for extending them to higher concentrations. Batchelor and Richardson’s data consisted of 45 data points, all of which
considered only two-particle interactions. This is appropriate are used here. Lockettand Al-Habbooby’s sedimentation data
for very dilute suspensions, but not for suspensions in which concerned thénitial sedimentation rates for binary suspen-
the spheres are close together. For moderately concentratedions and could not be used with the present model which uses
suspensions, three- and four-particle interactions are impor-averagesettling rates” (our emphasis). As noted in Secépn
tant[76,77] For very concentrated suspensions, lubrication the propagation of concentration gradients can change the
terms must be considerggll]. Thus, any extension of Batch-  concentration at the top of the region just above the packed
elor's work to higher concentrations is strictly empirical. bed and subsequently change the concentrations in the up-
It seems to us that models based on slip velocities haveper levels[34]. The reference to average rates suggests that
an inherent advantage over those based on an extensiomoncentration changes were indeed occurring. Certainly, sus-
of Batchelor's equations. At low Reynolds number, all pensions with voidage values in much of the range shown in
particle—particle interactions occur via the flyi@3]. As Figs. 3—-13 of 78] are well known to produce concentration
indicated by Eq.(7), the gravitational force on a sphere gradients in monodisperse suspensi@t8®. Simulations of
is balanced by the force exerted on it by the fluid. E). bidisperse and polydisperse suspensions also produce gradi-
shows that the upward flow of fluid is substantial wligeis ents over awide range of concentrations. For exankijide 10
large. Thus, it makes sense to use slip velocities to calculateshows the results of a simulatif®?] of the sedimentation of
settling velocities. More importantly (as noted in Sect®n the polydisperse suspension studied by Shannon [gt,46]
the difference between two velocities is objective, while a whose experimental values are also indicated. Spheres of 11
single velocity is no{38]. The assumptions involved in the species (approximating a normal distribution with 2,048,000
derivation of the MLB equation are carefully set ou{&3]. spheres) were randomly distributed over the height of the col-
A recent review[35] compares results computed from umn and their trajectories were calculated by the method of
many settling models with data from a paper by Selim et Bargiet et al[34] (which is summarized in Sectids). Note

8. Discussion
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